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ABSTRACT

Functional logic languages provide a powerful programming paradigm combining

the features of functional languages and logic languages. However, current imple-

mentations of functional logic languages are complex, slow, or both. This thesis

presents a scheme, called the Basic Scheme, for compiling and executing functional

logic languages based on non-deterministic graph rewriting. This thesis also de-

scribes the implementation and optimization of a prototype of the Basic Scheme.

The prototype is simple and performs well compared to other current implemen-

tations.
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Chapter 1

INTRODUCTION

Lazy functional logic languages, such as Curry [Hanus, 2006] and T OY [Ca-

ballero and Sánchez, 2007], combine the features of lazy functional languages and

logic languages — laziness from functional languages and free variables and non-

deterministic execution from logic languages. However, functional logic languages

are difficult to implement correctly, efficiently, and simply. Most current imple-

mentations rely on complex compilation schemes and runtime systems, but still

produce slow programs. However, functional logic programming provides a concise

and effective way to encode many algorithms. So, efficient and easy to understand

implementations would be very useful for both real-world use and for research into

FL programming and compilers.

My contribution is the development, with Sergio Antoy, of an evaluation scheme

for functional logic programs called the Basic Scheme [Antoy and Peters, 2012]

(Section 4.3). In addition, I contribute a prototype Curry system based on the

Basic Scheme (Section 4.4) which shows the Basic Scheme is practical and easy

to implement. As part of this prototype I describe a new intermediate language

for representing functional logic programs. Sergio Antoy’s contribution was pri-

marily at the level of the formal model of the Basic Scheme. The work on the

implementation is entirely my own.

The Basic Scheme is a simple technique that implements lazy, non-deterministic
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computation in a strict, deterministic language and performs well in real imple-

mentations. This provides a platform for both efficient practical implementations

and research. The Basic Scheme requires only a few simple features in the target

language: simple pattern matching on one symbol at a time, mutable records, and

first-class function pointers.

I provide an overview of functional and functional logic programming with a

focus on implementation of such languages (Chapter 2). I provide an overview

of graph rewriting as applied to formalizing and implementing functional logic

languages (Chapter 3). I provide an overview of how functional logic languages

are compiled and implemented including specific challenges of implementing func-

tional logic languages and how they have been addressed in the past and how

this issues are addressed by the use of a subclass of graph rewrite systems, called

Limited Overlapping Inductively Sequential (LOIS) systems, in the Basic Scheme

(Chapter 4). I also provide details of the implementation and performance of a

prototype Curry system based on the Basic Scheme, called ViaLOIS because of

its use of LOIS graph rewrite systems as an intermediate representation. This

includes various small changes that where made to the formal Basic Scheme to al-

low efficient implementation (Section 4.4). I outline some interesting possibilities

that could be the basis for future work (Chapter 6.1), including some discussion

of the parallel evaluation of LOIS systems. Finally, I provide the conclusions that

can be drawn from this work (Chapter 6.2). I also provide the source code of the

benchmarks used and a link to complete source code of ViaLOIS in Appendix A

and Appendix B, respectively.

1.1 NOTATIONAL CONVENTIONS AND SYNTAX

Graphs are written using a linear notation [Echahed and Janodet, 1997, Defini-

tion 4]. Informally, a graph is written g : s(x1, . . . , xk) where g is the root node

of the graph, s is the symbol labeling g, and x1, . . . , xk are the successors of g
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a(g : b(x, y), a(g, z))

(a) The linear representation of

a graph

means

a





 CC
a

nnnnn ===

b
��� ??? z
x y

(b) The same graph in a graph-

ical representation

Figure 1.1: The linear representation (a) represents the graph (b).

increment(x)→ x+ 1

(a) A rule

if x == 2 then 0 else f(x)

(b) An expression

let x = f(y) in (x, x)

(c) let representing sharing

Figure 1.2: The notation I use for programs and expressions.

which can be either previously defined nodes or new nodes. For nodes that do not

need to be referenced, the identifier may be omitted; for example c(1) represents

the same graph as g : c(1). An example is shown in Figure 1.1. The notation

n : represents a node n that may be labeled with any symbol and may have any

successors. Because colon is used in the linear representations of graph the cons

operator for lists is written x :: xs.

I present programs using a combination of graph rewriting notation and func-

tional programming notation. Operation rules are written using graph rewrit-

ing notation as shown in Figure 1.2a. Expressions are written using a func-

tional notation, except that function parameters are in enclosed parentheses and

comma delimited as shown in Figure 1.2b. let is used to represent sharing of a

subexpression as shown in Figure 1.2c and does not imply any evaluation order.

let x = f(y) in (x, x) is equivalent to the linear graph notation (x : f(y), x).



www.manaraa.com

4

Chapter 2

DECLARATIVE PROGRAMMING

Declarative programming encourages the programmer to focus on the problem

they are trying to solve instead of the specifics of how to solve it. Functional

programming allows the programmer to focus on the specific functional relation-

ships between values without having to specify how the functions will be evaluated.

Logic programming allows the programmer to describe the solution to the prob-

lem and leave finding a solution that matches that description to the language

implementation. Functional logic programming merges these ideas providing an

environment where functional relationships can be expressed as a description of a

solution instead of a traditional equation.

A common and very powerful feature of modern declarative languages is pattern

matching. Pattern matching allows the programmer to concisely enumerate a set of

cases that should be handled differently by the program and to extract information

from data structures.

2.1 FUNCTIONAL PROGRAMMING

Functional programming provides many useful abstractions, including higher-order

functions. These allow algorithms to be implemented as functions and then com-

posed to build more complex algorithms.

Functions are first-class values in functional programming, which allows for very

elegant abstraction of algorithms. For instance, a map function can be defined that

implements iteration over a list, but instead of doing a specific operation on each
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element it takes another function as a parameter and calls that function on each

element.

2.1.1 Evaluation Order

Functional programs can be evaluated either by eagerly (also called strictly) evalu-

ating expressions as soon as possible or by lazily evaluating expressions only when

their value is actually needed (such as for output).

Eager Evaluation

An eager language evaluates expressions as soon as it has enough information to

do so. This is generally easier to implement as there is no need to store thunks and

it is faster for cases where everything needs to be evaluated eventually. However,

in cases where some value is never used, a eager strategy will evaluate that value

whereas a lazy strategy will not. Because of this, if-then-else cannot be imple-

mented as a function in a eager language: both the then and the else expression

would be evaluated regardless of the value of the conditional. The unnecessary

evaluation is both a performance problem and a semantic problem because even

if the condition is True, non-termination or a fatal error while evaluating the else

expression would prevent the program from completing.

Lazy Evaluation

Lazy evaluation refers to evaluation strategies in which evaluation in not performed

until the value is actually needed. This type of strategy has a number of advantages

including the ability to implement if-then-else as a function instead of as a primitive.

Also in lazy languages, it is possible to define infinite data structures and, as long as

only a finite number of elements are actually accessed, the program will complete in

finite time because the rest of the data structure will be left unevaluated. However,
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implementing lazy evaluation has a cost. Unevaluated expressions, represented by

thunks or continuations, must be stored until their value is needed.

2.2 LOGIC PROGRAMMING

Logic programming allows the programmer to describe the solution to a problem,

but leave finding a solution that matches that description to the implementation.

This makes it very easy to prototype an idea by simply writing a description of

what you want the result to be and then running it. In many cases this will be

slow compared to writing out a specific algorithm. However, the programmer time

saved may outweigh the execution time increase.

In logic programming there is a concept of failure, which represents computa-

tions that do not produce values, for example 1/0. Unlike in deterministic lan-

guages, failure in logic programs does not result in a crash, but instead is part of

the normal execution of programs. Failure represents the lack of a result so I will

write it as the bottom symbol ⊥.

Instead of pattern matching, many logic programming languages implement

unification; this works by taking two expressions and attempting to make them

equal by instantiating free variables of both expressions to specific values. This is

similar to matching a value against a pattern.

2.2.1 Non-determinism

In traditional logic programming languages, non-determinism is provided by free

variables (also called logic variables). Free variables take on whatever value is

needed by the computation. In cases where there are multiple ways for the com-

putation to proceed the free variable will take on all values (either one at a time

or all in parallel depending on how the system is viewed).

Another way to represent non-determinism is through explicit choices between
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member(x :: xs)→ x

member(x :: xs)→ member(xs)

member([ ])→ ⊥
(a) member non-deterministically re-

turns each element of its argument.

membergt10(l)→ if x > 10 then x else ⊥
where x = member(l)

(b) membergt10 constrains the call to member so that

only elements that are greater than 10 are allowed.

Figure 2.1: (a) shows a function to select an arbitrary element from a list. (b)

shows a function to select an arbitrary element that is greater than 10 from a list.

membergt10 applies constraints to the non-determinism using the if statement

and the explicit failure when the condition is not met. Both functions are non-

deterministic in that it is not specified which element of the list will be returned

just that it will fit the criteria.

values. The choice operator, written ?, is an explicit representation of non-

deterministic choice; for example the expression 1 ? 2 has exactly two possible

values 1 and 2. The choice operator can be represented in as free variables and

vice versa. However, I will use ? in this thesis because it is used heavily in func-

tional logic programming and the Basic Scheme in particular.

Non-determinism allows computation with incomplete information. The pro-

grammer provides a set of constraints on a value, but not a specific algorithm

to find a value that fits these constraints. Conceptually, the system will non-

deterministically provide some value that matches the constraints. For example,

member in Figure 2.1a selects an arbitrary element of the list and membergt10 in

Figure 2.1b selects an element of the list that is greater than 10. Equivalently

non-deterministic operations can be viewed as returning a set of all possible values

and the caller of the operation trying all the values to find the ones that result in

successful evaluations.

In languages like Prolog that provide non-deterministic primitives as their only

control structures, it is necessary to specify the strategy used to discover successful
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values. This is particularly important in languages that allow side-effects (such

as Prolog), but it also a performance concern, even in side-effect-free code. In

Prolog, and many other logic programming languages, non-determinism is handled

by backtracking as discussed in Section 3.2.2.

2.3 FUNCTIONAL LOGIC PROGRAMMING

Functional logic programming combines functional programming with non-deter-

minism as found in logic programming languages. Functional control structures

like recursion and functional syntax are combined with logic variables and non-

deterministic operations.

2.3.1 Non-determinism

In functional logic languages, non-determinism comes in two forms: free vari-

ables, and non-deterministic operations. Free variables in functional logic pro-

grams have the same semantics as they do in logic programs. Free variables and

non-deterministic operations are equally expressive [Antoy and Hanus, 2006]. Any

free variable can be encoded as a non-deterministic operation whose results are all

the values of the type of the variable. These operations are called generators and

are used to encode logic variables in the Basic Scheme.

Non-deterministic operations (also called non-deterministic functions) are func-

tions except that they may have multiple possible return values of which one

is chosen non-deterministically. Figure 2.1a shows a non-deterministic operation

member, that will return an arbitrary value from the list given as its argument.

2.3.2 Evaluation

Functional nesting is when a function application is a parameter to another func-

tion, for example f(g(x)). For non-deterministic operations, there are two ways in
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which functional nesting could be interpreted. Either the non-deterministic choice

is made when the call is made (called call-time choice), or it is made (possibly re-

peatedly and with different results) when the value is used in the function (called

use-time choice). This distinction can be thought of as the difference between

allowing non-deterministic values to be passed to function and restricting argu-

ments to deterministic values. Arguments can be made for both call-time and

use-time choice, but in general call-time choice is more intuitive, because the same

non-deterministic value is not allowed to take on more than one value in a single

computation. Call-time choice is the most common semantics and the one specified

by the Curry language [Hanus, 2005, p 15], so call-time choice will be assumed for

the rest of this thesis.

The function eq(x) → (x == x) provides an obvious example of the different

semantics. With call-time choice eq(x) will always return True, but with use-time

choice True will always be among the results, but False will also be among the

results if x has two or more possible values. For instance, eq(0 ? 1) will produce

both True and False under use-time choice.

Call-time choice changes the semantics of the evaluation process so that sharing

of a subexpression has a semantic meaning, and hence it is not valid to add or

remove sharing. For instance, eq(0 ? 1) is not equivalent to (0 ? 1) == (0 ? 1), but

it is equivalent to let x = 0 ? 1 in x == x. The semantic significance of sharing

adds some noticeable complexity to the formalization of the Basic Scheme.

The same choice between lazy and eager evaluation that applies to functional

programs also applies to functional logic programs. As long as sharing is properly

maintained and choices are handled reasonably, either evaluation order can be used.

However, the Curry language specifies lazy evaluation, and I will only address lazy

functional logic languages in this thesis.
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Chapter 3

GRAPH REWRITING FOR FUNCTIONAL LOGIC EVALUATION

Graph rewriting formalizes computation as a series of transformations on a graph.

These transformations are called rewrites; some examples are shown in Figure 3.1.

The graph represents the expression being evaluated by a rewrite system R. The

functions defined in the program are represented as symbols in R. The semantics

of the functions are represented as rewrite rules over these symbols. This set

of rewrite rules and symbols is a graph rewrite system (GRS). In this chapter, I

provide informal definitions sufficient for the development of the Basic Scheme.

Echahed and Janodet [1997] provide formal definitions of these terms.

I will limit the discussion to constructor-based GRSs because they allow a sim-

ple definition of a value that results from a computation and the Basic Scheme

is based on constructor-based GRSs. A constructor-based GRS distinguishes con-

structor symbols (used for data, for instance suc in Figure 3.1) from operation

symbols (used for functions, for instance add in Figure 3.1) [Echahed and Janodet,

1997, Definition 22]. A GRS also contains a set of variables (used for binding

operation arguments to results of a rewrite, for instance x and y in Figure 3.1).

An expression (also called a term graph) is a rooted graph, where each node is

labeled with a constructor symbol or an operation symbol. Because expressions are

graphs, standard graph notation is used with them and they may be represented in

either linear or graphical form. A constructor-rooted expression is one whose root

is labeled with a constructor symbol and similarly for operation-rooted and “x-

rooted” in general. A substitution is a mapping σ = {x1/g1, . . . , xk/gk} meaning

that, when the substitution is applied, each instance of the variable xi will be
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add(suc(x), y)→ suc(add(x, y)) (suc-rule)

add(zero, y)→ y (zero-rule)

(a) A constructor-based GRS

add(suc(zero), suc(zero)) (1)

→ suc(add(zero, suc(zero))) By suc-rule (2)

→ suc(suc(zero)) By zero-rule (3)

(b) An evaluation in the GRS (a)

Figure 3.1: (a) shows a constructor-based GRS that implements Peano addition.

The symbols suc (successor) and zero are constructors. The symbol add is an

operation symbol. (b) shows a series of rewrite steps (written as →), rewriting an

operation rooted expression (1) to head normal form (2) and finally to full normal

form (3).
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replaced by the expression gi. I will write σ(e) to refer to the substitution σ

applied to the expression e. A pattern is an operation-rooted expression in which all

nodes other than the root are variables or constructors (for example add(zero, y) in

Figure 3.1a). Variables are placeholders for unknown values; they are either bound

by a pattern or free — we will only be concerned with bound variable as explained

in Section 3.2.1. A pattern π matches an expression g if there is a substitution σ

such that σ(π) = g.

I write g[o ← p] to denote g with the node o replaced with the expression p.

Formally, g[o← p] means changing every reference to o in the graph into a reference

to p. In most cases this is equivalent to in-place updates, meaning updating the

label and successors of o to be the same as the label and successors of p. However,

because sharing is semantically significant functional logic languages, this is not

always true (see Section 4.4.1)

An expression that contains only constructors is in normal form (also called,

full normal form). However, there are normal forms that contain non-constructors,

but in the context of constructor-based rewrite systems these normal forms are

considered failures. I will implicitly simplify failures to the failure symbol ⊥. An

expression in normal form that is not a failure is called a value. A expression that

is constructor-rooted, but may contain arbitrary subgraphs as its descendants is

in head normal form. If an expression e can be rewritten to a value e′, then e′ is a

value of e. For example, suc(suc(zero)) is a value of add(suc(zero), suc(zero)) by

the derivation show in Figure 3.1b.

Rewrite steps are primitive operations in graph rewriting. To perform a rewrite,

the system chooses a rule in the GRS, written π → r where π is the pattern of the

rule and r is the right-hand side of the rule, and subexpression n in the expression

g, such that π matches n. Section 3.3 discusses various ways to choose the rule and

node; for the moment we will assume they are chosen arbitrarily. The replacement

is r′ = σ(r) where σ is the substitution such that σ(π) = n. The result of the
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rewrite is a new expression g′ = g[n ← r′]. A rewrite step is written g → g′.

Figure 3.1b shows two rewrite steps.

A derivation of an expression e0 is series of rewrite steps, e0 → e1 → · · · . A

derivation of an expression e can also be considered an evaluation of e.

3.1 DEFINITIONAL TREES

Definitional trees encode a set of rewrite rules defining an operation. An operation

is inductively sequential if all of its rules can be encoded as a single definitional

tree. The Basic Scheme uses definitional trees to deterministically and efficiently

compute which subexpression of an operation application f(n1, . . . , nk) needs to

be evaluated for f(n1, . . . , nk) to be rewritten and, if none needs to be evaluated,

which rule can be applied to f(n1, . . . , nk). Figure 3.2 shows the rules of the

operation add and the definitional tree that encodes them. The definitional tree

tells us that to compute what rule to apply we must evaluate add’s first argument

w to head normal form. The root constructor of w then tells us which rule to

apply. Definitional trees can be viewed as a tree of nested case statements that

match various parts of the pattern one at a time. I will not discuss how to compute

definitional trees from an operation’s rules, but Antoy [1992] develops an algorithm.

Definitional trees have 3 kinds of nodes: branch, rule, and exempt. Each con-

tains a pattern. Branches represent choices between subtrees based on the runtime

value at a specific inductive node in the pattern. Branch nodes have a set of sub-

trees such that there is exactly one subtree for every constructor that could appear

at the inductive node. For example, the root node in Figure 3.2b represents the

choice between two rules based on the value of w. Rule nodes represent rewrite

rules for the operation. The pattern of the node is the pattern of the rewrite rule.

Exempt nodes represent patterns that are not covered by any rule in the GRS.

These expressions cannot be evaluated and are treated as failures in constructor-

based GRSs.
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add(suc(x), y)→ suc(add(x, y)) (suc-rule)

add(zero, y)→ y (zero-rule)

(a) a constructor-based GRS that implements Peano addition.

branch

add( w , y)

w=suc(x)

vvvvvvvvv
w=zero

HHHHHHHHHHH

rule

add(suc(x), y)→
suc(add(x, y))

rule

add(zero, y)→ y

(b) the definitional tree encoding the rules for the add operation.

Figure 3.2: The GRS (a) is converted into the definitional tree (b). The boxed

variable is the inductive node that must be evaluated to head normal form to allow

a rule to be selected. The rule nodes each have a different pattern in place of w so

it is easy to choose between them once w is in head normal form.

Given an expression e = f(. . .) and a definitional tree for the operation f , we

can compute what rewrite should be performed by traversing the definitional tree

from the root. The nodes are placed in the tree such that, if they are reached

by following the branch nodes, then the pattern will match e. If a rule node is

reached than that rule can be applied to e and if an except node is reached e can

be rewritten to ⊥. If a branch node is reached and the inductive node n is not in

head normal form then n needs to be evaluated to head normal form.

Formally definitional trees are defined in terms of partial definitional trees.

Definition 3.1. (Partial Definitional Tree) A partial definitional tree, T , is one

of the following:

branch(π, o, T̄ ) where π is a pattern, o is a node in π called the inductive node.
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T̄ is a set of partial definitional tree with exactly the patterns π̄, where

π̄ = {p | for each v ∈ so, p = π[o ← vi]} and so is the set of constructors in

the kind of the variable at o in π.

rule(π → r) where π is a pattern, π → r is a rule, and r is an expression.

exempt(π) where π is a pattern.

Definition 3.2. (Definitional Tree) A partial definitional tree Tf is a definitional

tree of an operation f if and only the root of Tf has a pattern f(x1, . . . , xk) where

each xi is a distinct variable.

3.2 NON-DETERMINISTIC FUNCTIONAL GRAPH REWRITING

Non-deterministic steps allow graph rewriting to be used to evaluate functional

logic programs, but also increases the complexity of the model. In a non-deter-

ministic GRS, a single expression may have more than one value. If the goal is to

compute every possible value, then some method is needed to find and compute

these values.

There are several differences from deterministic rewriting. Because failure is

allowed in non-deterministic computations, we need a way to represent failure. This

is done with a special constructor ⊥ that propagates up through the expression

whenever it labels a needed node. Also, sharing is semantically significant in

non-deterministic GRSs that use call-time choice for the same reason discussed in

Section 2.3.2.

In non-deterministic GRSs, rules are allowed to have overlapping patterns (for

instance member in Figure 2.1a). When the patterns overlap, more than one rule

may be applicable to the same expression and the system non-deterministically

chooses which rule to apply. This produces a number of different derivations for

the same expression. Some derivations may be successful, meaning that they result

in a value.
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x ? y → x

x ? y → y

Figure 3.3: The rules defining the choice operator as used in limited overlapping

GRSs. In such system this is the only operation with overlapping patterns in its

rules.

3.2.1 Limited Overlapping Inductively Sequential Rewrite Systems

This section defines a restricted class of non-deterministic GRSs called limited

overlapping inductively sequential GRSs (LOIS systems). LOIS systems were de-

scribed by Antoy [2011] and are used as the source program of the Basic Scheme

because they allow non-determinism to be handled more simply than general non-

deterministic GRSs.

A graph rewrite system is limited overlapping if the only rewrite rules with over-

lapping patterns are the rules for the choice operator ?, shown in Figure 3.3. This

is an implementation of the choice operator discussed in Section 2.2.1. Because

? is the only operation with overlapping patterns it is the only operation whose

rules need non-deterministic handling. Any GRS can be converted to a limited-

overlapping system using the choice operator [Antoy, 2001]; Figure 3.4 provides

examples. In cases where the patterns overlap, but are not identical, an auxiliary

operation can be introduced that matches against the more specific pattern and

fails on any other pattern.

In limited-overlapping systems ? is often treated as a representation of non-

determinism instead of as an operation whose rules can be applied. The choices

are moved toward the root of the expression to allow the evaluation of parts of the

expression without applying the rules of ?.

It is useful to define two special normal forms for limited overlapping systems
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member(x :: xs)→ x

member(x :: xs)→ member(xs)

=⇒
member(x :: xs)→ x ?member(xs)

(a) A simple operation with overlapping rules converted in limited-overlapping form.

f(x :: xs)→ x

f(xs)→ g(xs)

=⇒ f(xs)→ hd(xs) ? g(xs)

hd(x :: xs)→ x

(b) An operation with overlapping, but distinct, patterns in its rules converted in

limited-overlapping form.

Figure 3.4: Examples of overlapping operations converted into limited-overlapping

form.

to describe where the choices are in the expression. Non-deterministic normal

form is an expression in which all the choices are near the root and underneath

the choices are normal form expressions, so any path from the root there will

contain zero or more choices at the beginning of the path and none there after.

An expression in non-deterministic normal form (even if it contains failures) is

called a non-deterministic value. A non-deterministic value is a set of zero or

more deterministic values. Non-deterministic head normal form is an expression

with choices near the root with head normal form expressions under them. These

head normal form expressions may contain other choices. Examples of these normal

forms are shown in Figure 3.7; every expression is in non-deterministic head normal

form and the last is in non-deterministic normal form.

A GRS as a whole is inductively sequential if all its operations are inductively

sequential (that is, they have definitional trees). A system that is both limited

overlapping and inductively sequential is a LOIS system.

LOIS systems allow for efficient evaluation strategies (see Section 3.3) even

though they are non-deterministic [Antoy, 2005]. As described LOIS systems do
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not allow for free variables. However, any LOIS system with free variables is

equivalent to another LOIS system without free variables [Antoy and Hanus, 2006].

3.2.2 Implementing non-determinism

There are two basic axes that can be used to categorize implementations of non-

determinism in deterministic systems (such as real computers): search strategy

and binding strategy. A search strategy provides a way to try different non-

deterministic choices in an expression to find a value. A binding strategy provides

a way to find the possible bindings for any given free variable.

The most common search strategy is backtracking, which works by trying all

possible values of a variable or non-deterministic operation, one at a time, until

one is successful. If more than one value is needed, the search continues. Other

search strategies include cloning, bubbling [Antoy et al., 2006], and pull-tabbing

[Antoy, 2011]. These are discussed in more detail in the following sections.

In some cases, the binding of a free variable is easily derived because it is

directly or indirectly stated to be equal to some other value. In this case, the

free variable can simply be bound to that value. However, there are many cases

where this is not possible, for instance y = x + 1 where x is free. In these cases

a value (or set of possible values must) be found to bound the variable (x in the

example above). There are two common methods for handling this: Residuation

and narrowing.

Residuation [Hanus, 1992] works by suspending evaluation when a free variable

cannot be bound and attempting to evaluate another expression in the program.

This allows multiple expressions to bind variables for each other. When a variable

that was residuated on is bound the suspended computation is resumed. However,

as shown by Hanus [1992], there are programs for which residuation cannot bind

all variables. Some systems, such as CLP(R) [Jaffar et al., 1992] and CLP(FD)

[Codognet and Diaz, 1996], extend residuation with a constraint solver over a
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domain (real numbers and finite domains, respectively).

Narrowing [Antoy et al., 2000] allows variables to be non-deterministically

bound without suspending the computation. If a free variable’s binding is needed

then the system will simply bind it non-deterministically to every possible value

for that variable, or equivalently the free variable will be replaced with a non-

deterministic choice between all possible values for that variable. Unlike residua-

tion, narrowing will always find a successful value for a variable, if there is one and

it is finite, simply because it will try every possible value.

Although residuation and narrowing theoretically produce the same results

(with the exception of cases where residuation fails to find a value), in practice

they perform quite differently. Residuation requires the suspension and resuming

of computation whereas narrowing does not. Narrowing requires that all possible

values of the variable be known so in practice it requires that the type be known,

whereas residuation does not.

Backtracking

Backtracking works by evaluating the program deterministically, but when the

system encounters a choice, then all possible values of the choice are tried in order.

If a value causes the computation to fail, the system tries the next: essentially this

performs a depth first search on the tree of choices to find successful values. This

can become a problem for a number of reasons:

• If one non-deterministic choice prevents the program from terminating, then

no more choices will ever be tried. This makes backtracking incomplete in

the sense that, even if there is a terminating evaluation for the problem

backtracking may never find it.

• It is difficult to share computations between non-deterministic branches, even

if the computation is not effected by the choice.
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However, backtracking is also one of the most efficient methods of handling non-

determinism in situations where completeness is not needed and there is no com-

putation shared between non-deterministic branches.

Cloning

Cloning implements non-determinism by copying the expression being evaluated

when a choice is encountered and then evaluating each possible value for the choice

in its own copy. Like backtracking, evaluation proceeds deterministically until a

choice is encountered. Cloning has many of the same problems as backtracking

and also tends to be slow because a copy of the state of the computation must be

made or a persistent data structure needs to be used to allow multiple changed

copies of the expression to exist. However, cloning allows parallel execution of

non-deterministic branches and parallel cloning strategies are complete.

Bubbling

Bubbling [Antoy et al., 2006] only works on limited overlapping GRSs. In limited

overlapping GRSs, we can keep all possible states of the expression in one larger

expression. This is done by moving the choices toward the root of the expression

and then evaluating the expressions underneath these choices. This is similar to

cloning in that, if an operation is applied to a choice, then the application will be

duplicated and evaluated for both sides of the choice. However, it has a number

of advantages. For example, bubbling can dramatically reduce the amount of

copying needed compared to cloning. Also, unlike backtracking, bubbling can be

implemented in a way that allows concurrent evaluation of different sides of a

choice.

Bubbling moves choices up to one of their dominators closer to the root of the

expression. A dominator of a node is another node that is on every path from the

node to the root. A bubbling system clones the paths from the dominator to the
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pair(f(x), g(x))

where x = T ?F

pair

���� ...

f
//// g

���

?

��� ...

T F

=⇒

pair(f(T ), g(T )) ?

pair(f(F ), g(F ))

?

				 222

pair

��� ... pair

��� ...

f
--- g

���
f

--- g

���

T F

Figure 3.5: The bubbling transformation on an expression. The system must find

a dominator to perform the transformation. =⇒ represents the bubbling step.

choice, but it does not clone the choice. This is not a local transformation and

finding the dominator can be expensive because it requires traversing all paths

back to the root of the graph. An example of this transformation on an expression

is shown in Figure 3.5.

Because all the different choices are kept in the same expression, it is also

possible to share the values of subexpressions between non-deterministic branches.

For example, given an operation defined by the rule f(x)→ let y = slow(x) in (y+

1) ?(y + 2), when a traditional backtracking or cloning system evaluations f 100

it will evaluates slow 100 twice — once for each side of the choice. However, in

bubbling, the evaluation of slow 100 will be shared between the non-deterministic

branches.

Pull-tabbing

The Basic Scheme uses a technique called pull-tabbing to handle non-determinism,

which has several advantages over previous techniques. Pull-tabbing [Antoy, 2011]

allows more control over when choices will be handled. Also, like bubbling, compu-

tations are shared between branches of the non-determinism, which can dramati-

cally increase performance. Pull-tabbing can only be applied to limited overlapping
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Just

?2
��� ///

T F

Ξ

?2
��� 333

Just Just

T F

Figure 3.6: A simple example of pull-tab transformation (written Ξ) to show the

“unzipping” process that gives it its name. The Just node is duplicated (“un-

zipped”) to allow the choice to be moved toward the root of the expression.

systems because all non-determinism must be represented by the choice operator

?.

Intuitively pull-tabbing moves choices up toward the root of the expression

by “unzipping” the nodes above it. It is called pull-tabbing because the process

resembles pulling on the choice and unzipping the expression as if it where a zipper

and the choice were the tab of the zipper. An example of this is shown in Figure 3.6.

Pull-tabbing moves choices up to the root of the expression e by replacing

symbols applied to a choice with a choice of symbol applied to the two branches

of the original choice. This moves the choice toward the root of e and duplicates

the symbol. A more complex example is given in Figure 3.7. The result e′ of

repeated pull-tab steps is an expression that has all the choices near the root. A

pull-tab step is written e Ξ e′. Under the choices are deterministic expressions; each

expression is the result of a different non-deterministic evaluation of the choices

in e by the rules of ?. However, choices may be moved up more than one path,

resulting in the choice being duplicated. Because of this, choices are given an ID

that is carried by all duplicates, so that the system can handle this case correctly.

Formally, given an expression e with a subexpression g : s(. . . , p : ?i(x, y), . . . ),

where s is any symbol and x and y are arbitrary subexpressions, a pull-tab step

e Ξ e′ is a replacement e[g ← ?i(s(. . . , x, . . . ), s(. . . , y, . . . ))]. This duplicates the

node g (note that there are two s-rooted symbols in the replacement) and moves
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pair(x, x)

where x = T ?F

pair

?2
��� ...

T F

Ξ

pair(T, x) ? pair(F, x)

where x = T ?F

?2



 111

pair

111111111
LLLLLLL pair

111

?2



 ***

T F

Ξ
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where x = T ?F

?2



 ????

?2



 111 pair

111

pair

KKKKKKK pair
///

NNNNNNNN ?2

}}}}} ***

T F

Ξ

(pair(T, T ) ? pair(T, F )) ?

(pair(F, T ) ? pair(F, F ))

?2
{{{{{

CCCCC

?2



 111 ?2




 111

pair
111 pair





LLLLLLL pair

rrrrrrr
111 pair






T F

Figure 3.7: The pull-tab transformation (written Ξ) applied repeatedly to an

expression. Each step moves a choice nearer the root and may duplicate a choice.

The final expression is in non-determinism normal form. The notation ?2 represents

a choice with ID 2.
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the choice towards the root of the expression.

In the resulting expression, we can define consistent paths as paths that consis-

tently take the same branch (left or right) of choices with the same ID. Similarly,

a consistent derivation is a derivation that always chooses the same branch when

non-deterministically evaluating a choice with a given ID [Antoy, 2011, Defini-

tion 4]. Every value on a consistent path is the result of a consistent derivation. A

consistent value is a value that is the result of a consistent derivation. Inconsistent

values are ignored because they may not be correct in a system using call-time

choice.

For example, the last expression of Figure 3.7 shows four values of which only

pair(T, T ) and pair(F, F ) are consistent. These values can be reached by consis-

tently following the same branch (left or right) when the traversal reaches choice

with ID 2. However, the other values are inconsistent because they can only be

reached by paths that go both left and right at choices with ID 2.

Formally, consistent paths are defined in terms of the fingerprint of the path. A

path’s fingerprint is a set of pairs of choice IDs and directions (Left or Right) that

defines the choices that where traversed and the side that was taken at each choice.

A consistent fingerprint contains at most one pair for each choice ID. The consistent

values of Figure 3.7 have fingerprints of {(2,Right)} and {(2,Left)}. However the

inconsistent values have the fingerprint {(2,Right), (2,Left)} meaning that they

did not consistently make the same choice for the choice ID 2.

3.3 EVALUATION STRATEGIES

To evaluate an expression to normal form, we need a strategy to find subexpressions

to rewrite and rules that apply to those subexpressions. One strategy is to choose a

subexpression randomly and then search for a matching rule in the set. However,

this is inefficient because we may perform unnecessary work, if the rewrite we

choose to do is never needed.
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B(g : d(p : ?i (nx, ny))) = Pg(g, p);B(L(g));B(R(g)); B.1

B(g : d(x)) = g[g ← v(x)]; B.2

B( ) = null B.3

Figure 3.8: The procedure B produces a computation ω(B(e)) that, if e = d(g),

performs pull-tab steps on d(g) to bring any choices near the root of g above the

application of d and then rewrites the applications of d with applications of v.

A needed rewrite is a rewrite that must be done to get the expression to normal

form. For example, given the operation head defined by the rule:

head(x :: xs)→ x

When evaluating head(f(x) :: g(y)) to full normal form rewriting f(x) is needed,

but rewriting g(y) would be wasted because head will never actually use the value

of g(y). A needed node is a node in an operation’s patterns that must be brought

to head normal form. For example, in head(x), x is needed because the rule for

head requires that x has a specific constructor so it must be in head normal form

to apply the rule.

3.4 GRAPH REWRITING PROCEDURES

To formalize the Basic Scheme, we need a way to describe a specific deterministic

rewriting process. I will use a set of procedures that compute a sequence of actions

based on the state of the expression. This syntax and approach was developed by

Sergio Antoy for use with the Basic Scheme [Antoy and Peters, 2012].

Procedures take an expression as an argument and return a sequence of actions

to perform on a global state of the expression. Each action operates on a specific

input state and produces an output state. Figure 3.8 shows a procedure that

returns actions that replace all applications of d(x) near the root of the expression

with v(x) and makes sure that x is not choice-rooted by performing pull-tab steps.
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Procedures are defined using a sequence of rules where earlier rules have higher

priority than later ones (in the same way as in deterministic functional languages).

Each rule has a pattern for its argument. If the pattern matches the argument then

the rule can be applied to derive a series of actions. However, no rule is applied

if a rule of higher priority is also applicable. These procedures return a sequence

of actions, not the result of applying those actions. The actions are applied as

a side-effect. This is why the procedures are not referred to as functions. For

example, in Figure 3.8, B.3 is only applied if B.2 cannot be applied so B.3 will

never be applied to a d-rooted expression.

Each action is either a pull-tab step, a replacement, or a call to another pro-

cedure. Pull-tab steps, written Pg(d, s), pull the choice s up along a path to d as

discussed in Section 3.2.2. Expression replacement is written using an overload-

ing of the standard notation, g[d ← s], meaning that all references to d in g are

replaced with references to s. In this context, g[d ← s] refers to the action of

replacing d with d in g instead of the expression resulting from that replacement.

Because of this, the action of replacing g itself is written g[g ← s]. Procedure calls

are written as Y (e) where Y is a procedure and e is its argument. Actions are

terminated with “;”, so a sequence of actions Ai is written A1;A2; . . . ;Ak;. The

empty sequence of actions is written null. It is useful to refer to the left and right

successors of choices explicitly without pattern matching; these are denoted L(g)

and R(g) respectively, where g is a choice-rooted expression.

Actions form a finitely branching tree, called the computation, denoted ∆(A),

where A is an action. Single actions (rewrites and pull-tabs) become leaves and

procedure calls become branches. Specifically, if A is a rewrite or pull-tab step,

then ∆(A) = A. If A is a procedure call Y (e) and there is a rule Y (p) = A1; . . . ;Ak

where e matches p with a substitution σ and this rule is of higher priority than all

other matching rules, then ∆(A) = (A, [∆(σ(A1)), . . . ,∆(σ(Ak))]). An example

based on the procedure in Figure 3.8 is shown in Figure 3.9a.
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e = d(?2 (3, 1))

∆(B(e)) = B(g1 : d(p1 : ?2 (3, 1)))B.1

ggggggggggg
XXXXXXXXXXXXX

Pg1(g1, p1) B(g2 : d(x1 : 3))B.2 B(g3 : d(x2 : 1))B.3

g2[g2 ← v(x1 : 3)] g3[g3 ← v(x2 : 1)]

(a) The computation ∆(B(e)).

Derivation ω(B(d(?2 (3, 1))))

d(?2 (3, 1)) Ξ c(?2 (g2 : d(3), g3 : d(1))) Pg1(g1, p1)

→ c(?2 (g2 : v(3), g3 : d(1))) g2[g2 ← v(x1 : 0)]

→ c(?2 (g2 : v(3), g3 : v(1))) g3[g3 ← v(x2 : 1)]

(b) The simulated computation ω(B(e))

Figure 3.9: The resulting computation (a) and simulated computation (b) from

the call B(e) where e = d(?2 (3, 1)). In the computation, procedure calls are shown

as nodes with the actions resulting from them as children. The replacements

and pull-tab steps are represented using the syntax introduced for describing the

procedures. The procedure calls are also annotated (as a superscript) with the

rule applied. The simulated computation is shown as a derivation annotated, in

the right column, with the actions that perform each rewrite. All expressions are

written in linear notation.
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The simulated computation ω(A) resulting from an action A is the sequence

of replacements and pull-tabs that are encountered in a depth-first, left to right

traversal of the computation ∆(A). The semantics of this computation are simply

the application of the replacements and pull-tabs in order. As will be shown later,

if the procedures are properly defined, then the simulated computation can be

considered a graph rewriting derivation. An example based on the procedure in

Figure 3.8 is shown in Figure 3.9b.

The trace of a node n is either the node itself or a node m that replaced n

during a rewrite [Antoy and Peters, 2012]. Intuitively the trace of a node is the

same node after it is updated in place. All references to nodes are implicitly traces.

So if n and m are nodes that may be the same, B(m);B(n); will first apply the

actions that result from B to m and then apply the actions of B to the trace of n,

which may not be the original n because it may have been changed by the actions

on m. In general this is equivalent to in-place replacement (changing the content of

the node). However, in the case of collapsing rules, a simple in-place replacement

is not sufficient. In the formal description, we will use the concept of a trace to

work around this problem. However, in the implementation, we introduce a kind

of indirection node that allows all replacements to be handled in-place.

Because traces are used systematically, each action Ai in a sequence A0; . . . ;Ak

operates on the output of the previous action Ai−1 or, in the case of A0, on the

initial state. So they can be considered a series of steps operating on the same

mutable object, which is the intuitive model of the rewrite procedures. Similarly,

in the computation tree, each action operates on the output of the previous action,

where the previous action of A is defined as the action that appears before it in

depth first traversal order: the preceding sibling of A or the previous action of the

parent of A. The root of the computation operates on the input expression and

has no previous action.



www.manaraa.com

29

Chapter 4

IMPLEMENTING FUNCTIONAL LOGIC LANGUAGES

4.1 CORE LANGUAGES

To ease the implementation of a programming language a simple core language is

often used. A core language is able to express everything that is expressible in the

programming language, but is significantly simpler.

FlatCurry [Hanus, 2008b] is a core language used in the compilation of Curry. It

was initially developed for Pakcs, but has since been used as the input for many

other implementations including KiCS2 and ViaLOIS. FlatCurry has the same

basic structure as Curry, but it removes a number of features such as anonymous

functions. FlatCurry provides the following features: function and constructor

application; function and constructor partial application; variable references; case

expressions limited to matching on the root constructor of an expression; non-

determinism both as free variables and non-deterministic operations; higher-order

functions via partial applications and an apply function; and let expressions to bind

variables. FlatCurry also provides information about the relationships between

modules and the types declared. However, although the types of all the symbols

defined in the module are specified, the actual code of the functions is untyped.

The LOIS intermediate representation or LOIS-IR (which is based on LOIS

GRSs) is an even simpler core language that developed for use in ViaLOIS. LOIS-

IR and how to generate it from FlatCurry is one of the contributions of this thesis.

The LOIS-IR is, in effect, the definitional trees of all the operations in the program.

Like FlatCurry, LOIS-IR is untyped in general, but contains some type information
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such as which types are in the system and which constructors belong to each of

them. Unlike a true LOIS GRS, LOIS-IR allows: built-in types and constants;

generators that represent every possible value of their type; partial application of

operations and constructors to build data structures that can later be evaluated;

and let expressions to represent sharing. Polymorphic functions can be translated

into LOIS-IR because it is untyped.

The representation of an operation’s definitional tree is similar to the definition

of definitional trees in Definition 3.2 except that: each node only contains a pattern

to match the inductive node of its parent; the inductive nodes are specified by

referencing a variable that is bound by a pattern in the current or any ancestor

branch node; and rules contain only the right-hand side of the rule because the

pattern is implied by the path taken through the definitional tree. Also, LOIS-IR

allows the compiler to tag a branch as incomplete so that any constructor that is

not explicitly mentioned is assumed to be exempt. LOIS-IR also allows matching

using literals of built-in types in addition to constructors.

4.2 COMPILING TO LOIS-IR

In FlatCurry, flow of control is described using limited case expressions that can

be viewed as definitional trees. However, unlike FlatCurry, LOIS-IR does not al-

low branching on values other than arguments to functions and only allows this

at the top-level of the operation, so single FlatCurry functions are split into mul-

tiple LOIS-IR operations whenever these features are encountered. For example,

Figure 4.1 shows the conversion of several FlatCurry expressions into LOIS-IR.

FlatCurry expressions are divided into two classes for the conversion process.

Simple expressions contain only variable references, constructors and operations

that have simple arguments, choices with simple arguments, and let expressions

involving only simple expressions. Complex expressions are expressions that are

not simple. Simple expressions can be converted into LOIS-IR directly because
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f(x) = case x of

True→ 1

False→ 0

⇒ f(True)→ 1

f(False)→ 0

(a) case expression on a variable

f(x)→ case g(x) of

True→ 1

False→ 0

⇒
f(x)→ f ′(g(x))

f ′(True)→ 1

f ′(False)→ 0

(b) case expression on a non-variable

f(x)→ h(case x of

True→ 1

False→ 0)

⇒
f(x)→ h(f ′(x))

f ′(True)→ 1

f ′(False)→ 0

(c) case expression inside an application

Figure 4.1: (a) shows how a case expression on an argument is moved into the

pattern matching and hence encoded in the definitional tree. (b) shows how a

case expression over a complex expression is translated into LOIS-IR by lifting

the complex expression into a new operation f ′, so that the case expression can

be encoded as the definitional tree of f ′. (c) shows how a complex expression

(a case in this example) that is an argument to an operation is lifted into a new

operation. The symbol ⇒ represents transformations performed by ViaLOIS to

convert FlatCurry into LOIS.
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each simple FlatCurry structure maps directly to an equivalent LOIS-IR structure;

complex expressions that cannot.

Complex FlatCurry expressions must be split into multiple different rules and

operations in LOIS-IR. FlatCurry case expressions at the top level of a function

that match against an argument are converted into branches in the definitional

trees of the operation (Figure 4.1a). However, this does not work for case expres-

sions that match against more complicated expressions; in this case a new operation

is built to perform the case over an argument (Figure 4.1b). FlatCurry let expres-

sions are simplified by lifting complex expressions being bound or in the body of

the let into new LOIS-IR operations and then generating a LOIS-IR let expression

of the simplified expression. Finally, case expressions nested inside function or

constructor applications are lifted into separate LOIS-IR operations because all

pattern matching in LOIS-IR must be done by a operation (Figure 4.1c).

LOIS-IR does not support free variables as such, but it does allow for genera-

tor functions which non-deterministically evaluate to every value of a type. Free

variables in a FlatCurry program are converted into generators. Free variables and

generators are equivalent as discussed in Section 2.3.1. FlatCurry does not have

types for local variables (including free variables), so the generator is untyped and

the specific generator to use must be chosen at runtime.

4.3 THE BASIC SCHEME

The Basic Scheme is formalized as a compilation process that converts a LOIS

source system into a set of strict, deterministic rewrite procedures called the target

program (see Section 3.4). This target program is easier to implement simply and

efficiently than the source program. The Basic Scheme, arguments for its correct-

ness, and extensions that allow better efficiency are some of the contributions of

this thesis.
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Three procedures are used: N (Normalize), H (Head normalize), and A (Ad-

just). They are formally defined in Figure 4.2.

• H(g) performs one rewrite or pull-tab step to bring g closer to head normal

form. H is defined based on the definitional trees of the operations in the

source system. H will either recursively call H to bring a needed node to head

normal form (if the needed node is an operation) or will perform a rewrite

(if a rule is applicable) or pull-tab step (if the needed node is a choice).

• A(g) performs pull-tab steps on g — which must already be constructor-

rooted with successors in non-deterministic normal form — to bring all

choices in the subexpressions of g to the root of g. The result of A is in

non-deterministic normal form.

• N(g) brings the expression g to non-deterministic normal form. First, N

brings g into head normal form using H, then N recursively calls itself to

bring all of g’s successors to non-deterministic normal form, then N calls A

to pull all the choices to the root.

If any procedure encounters node labeled with ⊥ in a needed position it will rewrite

its argument to ⊥. This is left implicit for clarity; these implicit rules will be

referred to as H.⊥, N.⊥, and A.⊥.

Since H varies dramatically based on the system being compiled, it is presented

as a algorithm that translates the definitional trees of the source LOIS system into

the set of rewrite procedure rules for H. The rules are generated in most specific

to least specific order. Each branch node is converted into a rule that examines

the value at the inductive node defined by the branch node and either performs

pull-tabs or recursively calls H on the inductive node. Each rule node is converted

into a rule in H that performs the rewrite described by the rule. Each exempt

node is converted into a rule in H that rewrites its argument to ⊥. The resulting
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N(?i (nx : , ny : )) = N(nx); N(ny); N.1

N(g : c(nx1 : , . . . , nxk
: )) = N(nx1); . . .N(nxk

); A(g); N.2

N(g : f( , . . . , )) = H(g); N(g); N.3

A(g : c(p : ?i ( , ), , . . . , )) = Pg(g, p); A(L(g)); A(R(g)); A.1

A(g : c( , p : ?i ( , ), . . . , )) = Pg(g, p); A(L(g)); A(R(g)); A.1
...

A(g : c( , , . . . p : ?i ( , ))) = Pg(g, p); A(L(g)); A(R(g)); A.1

A(c( , , . . . )) = null A.2

compile T
case T
when branch(π, o, T̄ ) then

∀Ti ∈ T̄ compile Ti
output H(g : π[o← p : ?i ( , )]) = Pg(g, p); H.1

output H(g : π) = H(π|o); H.2

when rule(π, l→ r) then

output H(g : l) = g[g ← r]; H.3

H(c( , . . . )) = null H.4

Figure 4.2: Compilation of a source program into a target program consisting

of 3 procedures: N, H and A. The syntax and semantics of the procedures

is described in Section 3.4. The rules of N and A depend only on the set of

operations and constructors. The rules of H are obtained from the definitional

tree of each operation by the algorithm compile. The symbols c and f stand for a

generic constructor and operation of the source program and i is a choice identifier.

The call to a target procedure with some argument g systematically operates on

the trace of g. [figure and caption based on Antoy and Peters, 2012]
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member(x :: xs)→ x ?member(xs)

(a) The source LOIS system.

branch

member( z )
z=x::xs

mmmmm z=[ ]

QQQQQQQQ

rule

member(x :: xs)→
x ?member(xs)

exempt

member([ ])

(b) The definitional tree representing (a).

Hmember(g : member(h : ?i ( , ))) = Pg(g, h) Hmember.1

Hmember(g : member(h : f(...))) = H(h) Hmember.2

where f is any operation symbol

Hmember(g : member(x :: xs)) = g[g ← x ?member(xs)] Hmember.3

Hmember(g : member([ ])) = g[g ← ⊥] Hmember.4

(c) The Hmember fragment generated from (b).

Figure 4.3: An example of conversion of a LOIS system into a strict deterministic

program by the Basic Scheme. The symbol member is an operation symbol and ::

and [ ] are constructor symbols.

H procedure is made up of a number of H fragments each implementing the rules

for a single operation. These fragments are treated as separate procedures when

it is convenient. The fragment implementing an operation f is called Hf .

Figure 4.3 shows an example of a LOIS system and how it is compiled by

the Basic Scheme. A complete evaluation in the target program is equivalent to

performing all possible non-deterministic derivations in the source program. For

example, in Figure 4.4 the result is a choice between three different values, each

representing a possible non-deterministic derivation of the source program.
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N //Just

member

::

���� ????

1 ::

����� ,,,

2 [ ]

∗
=⇒
N.2

N //Just

N //member

::

���� ????

1 ::

����� ,,,

2 [ ]

∗
=⇒
N.3

N //Just

N //member

H

99ssssss
::

���� ????

1 ::

����� ,,,

2 [ ]

∗
=⇒

Hmember.3

N //Just

N // ?6
��� CCCC

1 member

::

{{{{{
<<<<

2 [ ]

∗
=⇒
N.1

N.3

N //Just

N // ?6
��� CCCC

N 111 member

H

;;

::

{{{{{
<<<<

2 [ ]

∗
=⇒

Hmember.3

N.1

N.3

N //Just

N // ?6
��� 333

N 441 ?7
���� ????

N 112 member

H

88

[ ]

∗
=⇒

Hmember.4

N //Just

N // ?6
��� 333

N 441 ?7
���� ---

N 442 ⊥

∗
=⇒

Ns return

N.2

N //Just

A

<<xxxxx
?6

��� 333

1 ?7
���� ---

2 ⊥

∗
=⇒
A.1

N // ?6
��� 333

A

99rrrrrrr
Just Just

A

66mmmmmmmmmm 1 ?7
���� 111

2 ⊥

∗
=⇒
A.1

N // ?6
���� 333

A

88qqqqqqqq
Just ?7

��� 333

A

66lllllllllll 1 Just Just

A

44iiiiiiiiiiiiii 2 ⊥

∗
=⇒
A.⊥

As return

?6
���� 333

Just ?7
��� ---

1 Just ⊥

2

Figure 4.4: The evaluation of the expression Just(member(1 :: 2 :: [ ])), where

Just is a constructor and member is the operation defined in Figure 4.3a, by the

target program shown in Figure 4.3c combined with Figure 4.2. In each state

of the computation, the left column is the call stack of the target program and

the expression to the right is the state of the evaluation. The arrows from the

procedures on the stack to the expression show which node is the argument of

that procedure call; The transitions between the states are annotated with the

procedure rules used to perform the step. The symbol
∗

=⇒ represents one or more

computational steps (pull-tabs, replacements, and procedure calls).
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Together, the target procedures N, H, and A, provide a concrete implemen-

tation of source LOIS system. The target procedures can be evaluated eagerly

without losing the lazy semantics of the LOIS system. The implementation is

not dependent on the evaluation order of the target language because the LOIS

functions are represented as data.

4.3.1 Correctness of the Basic Scheme

In this section, I provide theorems that show the correctness of the Basic Scheme

and the outlines of proofs for these theorems. The theorems assume that N(e),

A(e), and H(e) terminate on their argument.

Lemma 4.1 states that any computation in the target program simulates some

pull-tabbing derivation in the source program.

Lemma 4.1 (Simulation). Let S be a LOIS system, T the program obtained from

S by the Basic Scheme, e an expression of S, and Y a procedure of T . If ∆(Y (e))

is finite, then ω(Y (e)) is a pull-tabbing derivation of e in S, i.e., e Ξ→ t1 Ξ→ . . . tn,

for some n > 0. [from Antoy and Peters, 2012, Lemma 1 (Simulation)]

Proof outline of 4.1. By structural induction over the computation ∆(A) where A

is an action over e.

Base case: If A is a pull-tab step or rewrite, then ω(A) is a pull-tabbing deriva-

tion of length one. If A is null or an uninterpreted procedure application then

ω(A) is a pull-tabbing derivation of length zero.

Inductive case: A must be a procedure application so ∆(A) = (Y ′(e0), B),

where e0 is the state of the expression before A is applied, B = a1, a2, . . . , ak, and

ai is a sub-computation of ∆(Y ′(e0)). By induction, each ai is a derivation of e0.

Specifically, a1 is a derivation of e0 with a result e1. Traces are used at every step

of the computation so a2 must be a derivation of e1 with a result e2 and so forth.

Every ai is a derivation of ei−1 with a result ei. So ω(Y ′(e0)) (the concatenation
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of ω(a1), ω(a2), . . . , ω(ak)) is a derivation e0
∗
Ξ→ e1

∗
Ξ→ ...

∗
Ξ→ ek. e0 must by a

subexpression of e and so any derivation of e0 is also a derivation of e. Therefore,

ω(A) is a pull-tabbing derivation of e.

If the lemma is true for a computation ω(A) where A is any action, then it is

true for a computation ω(A) where A = Y (e).

Theorem 4.2 states that:

1. The Basic Scheme is sound — the target program does not derive any values

that are not derivable in the source program.

2. The Basic Scheme is complete — from any state of the computation in the

target program it is possible to derive any value derivable in the source

program.

Theorem 4.2 (Correctness). Let S be a LOIS system, T the program obtained

from S by the Basic Scheme, e0 an expression in S, and N the procedure from T .

So, ω(N(e0)) = e0 Ξ→ e1 Ξ→ . . .

1. For each ei, if ei
∗→ v is a consistent derivation in S, then e0

∗→ v is a

consistent derivation in S.

2. For each ei, if e0
∗→ v is a consistent derivation in S, then ei

∗→ v is a

consistent derivation in S.

[based on Antoy and Peters, 2012, Proposition 1 (Correctness)]

Proof outline of 4.2. By Lemma 4.1, e0
∗
Ξ→ ek defines a pull-tabbing derivation of

e0 in S that never applies the rules of ?. Therefore, points (1) and (2) are identical

to (2) and (1), respectively, of Antoy [2011, Theorem 1].

Lemma 4.3 (Normal Form Result of A). If A(c(n1, . . . , nk)), where every ni is

a non-deterministic value, terminates then the last expression of the derivation

ω(A(c(n1, . . . , nk))) is a non-deterministic value.
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Proof outline of 4.3. By induction over the number of choices in the successors of

g.

Base case: If no ni has a choice at its root, then A(c(n1, . . . , nk)) = null and

c(n1, . . . , nk) is already in non-deterministic normal form.

Inductive case: If some ni is choice-rooted, A(g : c(. . . , ni : ?i ( , ), . . .)) =

Pg(g, ni); A(L(g)); A(R(g));, where ni is the first successor of g that is choice

rooted. Pg(g, ni) pulls a single choice above the c, so g is choice-rooted and L(g)

and R(g) are c-rooted. Also L(g) and R(g) contain one fewer choice in their ith

successor than g originally did. By induction, A(L(g)) and A(R(g)) bring L(g)

and R(g) respectively into non-deterministic normal form. So g is a choice between

non-deterministic values and hence a non-deterministic value itself.

Theorem 4.4 (Normal Form Result). If N(e) terminates, the last expression of

the derivation ω(N(e)) is in non-deterministic normal form.

Proof outline of 4.4. By induction on the expression e.

Base case: If e = c() where c is an arbitrary constructor or e = ⊥ then e is

already a non-deterministic value and ω(N(e)) is empty because N(e) = A(e) =

null or N(e) = null, respectively.

Inductive case: There are three cases.

1. If e = x ? y, then N(e) = N(x); N(y). By induction this will bring x

and y to non-deterministic normal form and, by definition, a choice of non-

deterministic values is a non-deterministic value.

2. If e = c(n1, . . . , nk) where c is an arbitrary constructor and k > 0, then

N(e) = N(n1); . . . ; N(nk); A(e);. By induction and the premise that N ter-

minates, this will bring n1, . . . , nk into non-deterministic normal form. By

Lemma 4.3, A(e) will bring e to non-deterministic normal form.

3. If e = f(. . .) where f is an arbitrary operation, then N(e) = H(e); N(e);.
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H(e) will perform a rewrite or pull-tab step on e to bring it closer to head-

normal form, so when N(e) is called recursively e will be at least one step

closer to head normal form. The recursive call to N(e) will repeatedly call

H(e) until e is in head normal form. Once e is in head normal form N(e)

will bring e to non-deterministic normal form by case 2.

4.3.2 Extensions To the Basic Scheme

The Basic Scheme evaluates all possible combinations of choices, but it also clones

choices and will evaluate expressions that can only be reached by inconsistent

paths. We extend the Basic Scheme to use fingerprints to avoid evaluating expres-

sions that are only needed on branches that will not produce consistent values. To

do this we need a new normal form: consistent normal form is non-deterministic

normal form except that it only requires subexpressions to be in non-deterministic

normal form if they are on consistent paths. Evaluating an expression to consistent

normal form is sufficient to get the values because all consistent values will be in

normal form and those are the only useful values.

An implementation can take advantage of this by passing a fingerprint to each

procedure and any procedure called with an inconsistent fingerprint will return

null. This avoids wasting time evaluating expressions on inconsistent paths and

will bring the expression to consistent normal form because every consistent path

will still be fully evaluated. I believe that Theorem 4.2 and Theorem 4.4 can be

extended to show that consistent normal form evaluation is sound, complete and

results in a consistent normal form.
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Input Program
Curry // parsecurry

FlatCurry // FlatCurry2LOIS

LOIS−IR

qqddddddddddddddddddddddddddddddddddddddddddddd

LOIS2OCaml
OCaml // OCaml Compiler

Binary // Executable

Figure 4.5: A block diagram of the ViaLOIS compiler. The components Flat-

Curry2LOIS and LOIS2OCaml are the core of ViaLOIS and are custom. The

components parsecurry (part of Pakcs [Hanus, 2008a]) and the OCaml Compiler

[INRIA, 2011] are existing tools.

4.4 VIALOIS: IMPLEMENTING THE BASIC SCHEME

ViaLOIS [Peters, 2012b] is a prototype implementation of Curry that uses the

Basic Scheme. Its name comes from its use of LOIS-IR as an intermediate repre-

sentation during compilation. ViaLOIS is one of the contributions of this thesis. It

is available online at http://web.cecs.pdx.edu/~amp4/vialois. I chose to use

OCaml [INRIA, 2011] because it is eager and provides powerful pattern matching

(which is not required, but makes the implementation easy). Also OCaml is a ma-

ture language with a compiler that produces very efficient code. ViaLOIS has two

stages and a single intermediate language. ViaLOIS takes FlatCurry as input and

converts it to LOIS-IR, using the techniques described in Section 4.2. ViaLOIS

then compiles the LOIS-IR into an OCaml program using the Basic Scheme. Each

constructor becomes an OCaml constant that contains the constructor’s name, ar-

ity, and a pointer to the type’s generator function. Each operation f becomes an

OCaml constant with name, arity, and an OCaml function that implements the

fragment Hf . The translation of operations is discussed in more detail in Sec-

tion 4.4.2. The ViaLOIS runtime library provides implementations of N and A.

This process along with the pre-existing components that were used are shown in

Figure 4.5.

ViaLOIS represents expressions as a graph of mutable records each representing

http://web.cecs.pdx.edu/~amp4/vialois
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a node and containing a symbol and a list of successors. The symbol is either:

an operation symbol, a constructor symbol, a choice containing an ID, a special

symbol representing a value of a built-in type, or an indirection node as defined in

Section 4.4.1.

4.4.1 Complications of In-place Rewriting

In-place rewriting avoids the expense of redirecting all the pointers to the original

node to a new version as is done in the formalization of graph rewriting. However,

an additional kind of node is needed to maintain sharing in collapsing rules. In-

direction nodes act as a pointer to another node. An indirection node pointing to

a node n is written ind(n). Collapsing rules rewrite the function application to an

indirection node. This ensures that the argument is not copied, breaking sharing.

For example, in the program shown in Figure 4.6a, id(x) cannot be replaced in-

place by a copy of x because then f(x) would return two copies of x which would

lose sharing, which is semantically significant as well as important for performance.

Instead id(x) rewrites to ind(x), so f(x) returns a pair with two indirect references

to the same shared node. An example is show in Figure 4.6.

Every time a node is referenced, the runtime must check if it is an indirect

node and, if so, operate on the target. Chains of indirect nodes can form and each

one in the chain must be dereferenced. Whenever an indirection node is traversed,

ViaLOIS “flattens” chains of indirection nodes by updating each one to point to

the target instead of another intermediate indirection node. This helps reduce the

cost, but does not remove it.

4.4.2 Translation and Runtime System

The translation of LOIS-IR into OCaml follows the Basic Scheme very closely. The

N and A functions are implemented generically in the runtime because construc-

tors and operations are easy to differentiate at runtime regardless of the program
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id(x)→ x

f(x)→ pair(id(x), id(x))

(a) A program that requires indirection

nodes.

f pair

����
7777

?2

��� ))) 6 ∗→ ?2

��� ))) ?2

��� )))

0 1 0 1 0 1

(b) An incorrect rewrite due to mishan-

dling of collapsing rules.

f pair

���� 2222

?2

��� )))
∗→ ind

2222 ind

����

0 1 ?2
���� 3333

0 1

(c) A correct rewrite. ind represents an

indirection node.

Figure 4.6: Because of the collapsing rule defining id, f (0 ?1) must be rewritten as

shown in (c) instead of as shown in (b) because sharing is lost in (c). The symbols
∗→ and 6 ∗→ represent correct and incorrect derivations respectively.

that is being evaluated. For each operation f , a function Hf is generated that

implements the fragment denoted by the same notation; the runtime dispatches

calls to H to the appropriate Hf function. In ViaLOIS, H brings its argument to

head normal form instead of performing one step as described in the Basic Scheme.

Hf is generated from the corresponding definitional tree by building a tree of

match statements in OCaml (the OCaml equivalent of case). These match state-

ments perform the exact same function as the rules of H in the formal definition.

Each branch node generates a match expression that will be nested inside a parent

match expression.

These match expressions handle cases where choices or operations are at the

inductive node in addition to dispatching to appropriate nested expressions gener-

ated by other definitional tree nodes. When the inductive node of an expression e,

where e is the expression that H was called on, is a choice p : ?i (x, y), a pull-tab



www.manaraa.com

44

step is performed. The path from the root of the operation to the inductive node is

rebuilt twice, producing two new expressions a = e[p← x] and b = e[p← y], then

e is rewritten in-place to be ?i (a, b). When the inductive node of an expression e

is an operation application n : f(. . .), then H is called on n and then H is called

on e again to complete the rewrite of e.

Each exempt node in the definitional tree generates a call that rewrites e to ⊥,

where e is the expression on which H was called. Each rule node generates a call

that rewrites e appropriately. In the case of non-collapsing rules, a new expression

r is built and e is rewritten in-place to r. In the case of collapsing rules where the

right-hand side is a variable x, e is rewritten in-place to ind(x).

H dispatches to the specific Hf functions using a function pointer stored in

the operation symbol for f , and N and A work by checking what type of symbol

a node has without needing to look at the specific name or other properties of the

symbol. This design allows easy and efficient dispatch over the symbol of nodes

and their successors.

4.4.3 Optimizations

ViaLOIS supports built-in types and operations as specialized symbols that carry

a value. This allows for efficient 32-bit integers for instance. Operations over

these types are implemented by manually writing the H fragment for them except

that, instead of performing LOIS style pattern matching, it will simply unpack the

built-in value (such as an integer), perform some operation on it and then rewrite

the operation application to the built-in value that was computed. The integer

module takes only 70 lines of code; mostly in a file implementing operations over

integers, but with a few lines in the core to declare and handle the special symbol.

In ViaLOIS, instead of performing a single step toward head normal form, H

brings its argument all the way to head normal form by calling itself if it rewrites

the root to a new operation instead of a constructor and when a rewrite is done on
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a subexpression. Also in this case, the call is directly to the Hf of the appropriate

operation since it in known at compile time.

ViaLOIS implements fingerprints as described in Section 4.3.2. The fingerprints

are represented using a mutable value in each choice ID that stores which side has

been traversed for that choice ID (left, right, or none). This is a major performance

advantage because all updates and lookups on the fingerprint are very fast.

4.5 BENCHMARK RESULTS

To evaluate the performance and simplicity of ViaLOIS, I tested it against three

other Curry implementations.

• Pakcs [Hanus, 2008a] is a mature Curry implementation that compiles Curry

source code into Prolog and hence handles non-determinism using backtrack-

ing and suffers from poor performance in deterministic computation.

• KiCS2 [Braßel et al., 2011] is a recent implementation that compiles Curry

code into Haskell code and implements non-determinism using pull-tabbing.

It also makes a concerted effort to detect and take advantage of determinism

for efficiency. These benchmarks were run on KiCS2 version 0.1.

• Mcc [Lux, 2007] is an older implementation of Curry that compiles Curry

code to virtual machine code. The virtual machine is implemented in C

and uses backtracking to implement non-determinism, but has much better

deterministic performance than Prolog based implementations.

For these benchmarks, ViaLOIS, even in its current unoptimized form, is as

fast or faster than Pakcs on all benchmarks and as fast or faster than KiCS2 on

many benchmarks, as shown in Figure 4.7. Mcc is faster than ViaLOIS on most

benchmark (except Sharing), but it uses a custom virtual machine written in C

giving it a performance advantage over the other implementations simply because
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Figure 4.7: Benchmark Results. ViaLOIS (based on the Basic Scheme),

KiCS2, Pakcs, Mcc.

it can take advantage of low-level optimizations not possible in Haskell, OCaml, or

Prolog. ViaLOIS requires much less code to implement, giving it a major advantage

in simplicity as shown by the lines of code in various implementations of Curry

shown in Table 4.1.

The benchmarks were run ten times on each implementation and median eight

were averaged to produce the presented values. The code run on each version was

nearly identical except for variation in the main function to compensate for varia-

tions in the implementations handling of non-determinism at the top level of the

program. The benchmarks were chosen to test a number of different performance

characteristics and to demonstrate that ViaLOIS can perform well.

ChoiceIDs tests the performance of large numbers of non-deterministic choices

over built-in types, most of which fail with very little computation. The pro-

gram non-deterministically generates 262144 integers searching for 262144−

1. Due to the left-to-right evaluation order of the implementations being

tested every choice will be traversed.
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PermSort tests the non-deterministic performance over algebraic data types by

performing a permutation sort over a list of 13 integers resulting in over

6× 109 possible values.

Tree tests the performance of deterministic manipulation of data structures and

recursive function calls. This program implements a simple binary tree and

inserts 200,000 pseudo-random numbers into it and then counts the number

of elements in the tree.

Sharing tests the performance of computations where an expensive computation

is shared over different non-deterministic branches. This performs a permu-

tation sort over a list of 5 numbers that are generated by a small version of

the Tree benchmark. This benchmark favors the pull-tabbing based imple-

mentations because backtracking implementations must repeat the expensive

generation of the numbers each time a new non-deterministic branch is tried.

Halfx5 tests the performance of computations where a non-determinism value is

shared between different parts of computation. This computes x = 1500/2 by

solving the equation 1500 = x+x and then computes the sum x+x+x+x+x.

Peano numerals are used. This benchmark shows the performance problems

associated with duplicating choices when a choice is shared.

Halfx2 is the same as Halfx5 except that the sum computed is x + x. The im-

provement in the performance of this benchmark over Halfx5 in KiCS2 and

ViaLOIS is due to the duplication of choices caused by pull-tabbing. This

benchmark combined with Halfx5, shows that ViaLOIS is roughly twice as

fast as KiCS2 at pull-tabbing and choice handling.

Although these benchmarks are small, artificial programs, they still test the

performance of important parts of the Curry implementations. These benchmarks

are based on the benchmark set used to test KiCS2 Halfx2 and Halfx5 are taken
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Compiler Runtime

ViaLOIS 0.56 (Curry) 0.75 (OCaml)

KiCS2 4.6 (Curry) 1.6 (Haskell)

Pakcs 4.7 (Prolog) 3.3 (Prolog)

Mcc 4.3 (Haskell) 9.6 (C)

Table 4.1: Lines of code (in thousands) of several Curry systems. Line counts

exclude comments, blank lines, and the standard library. Built-in functions are

included as part of the runtime. The parser and first compilation stage (conversion

to FlatCurry) is omitted from the line counts as this part of the code is shared

between all 4 implementations. [figure and caption from Antoy and Peters, 2012]

directly from benchmark sets developed for KiCS2. The source code for the bench-

marks is provided in Appendix A.

As a simple metric of code complexity Figure 4.1 shows the number of lines of

code in various implementations of Curry. ViaLOIS is much smaller than any of the

other implementations, which supports the idea that it is simpler than the other

implementations. Although ViaLOIS is not a complete implementation of Curry, I

believe that a complete implementation of Curry based on the Basic Scheme would

still be simple and concise, because additions such as IO support and new built-in

types have required only 100-200 lines of code. The primary missing features are

function patterns and free variables of built-in types. Function patterns should

be easy to implement by translating them into currently supported features. Free

variables of built-in types will be more complicated because to support them some

form of residuation will be needed, but Antoy and myself have some ideas of how

to implement this simply.

The difference in size between KiCS2 and ViaLOIS is partly due to the com-

plicated handling of choices used in KiCS2. In ViaLOIS each choice is handled
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consistently, but in KiCS2 choices can be in 4 different states. Each of these cases

must be handled separately whenever choices are handled.
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Chapter 5

RELATED WORK

Graph rewriting is the most common formalization of functional logic computa-

tion, but it is not the only formalization. Constructor-based conditional rewrite

logic [Gonzlez-Moreno et al., 1999] formalizes functional logic programs as state-

ments in a formal logic. Gonzlez-Moreno et al. also provide a term rewriting

calculus for computing solutions to programs written in this logic. Some other

work has also focused on term tree rewriting instead of graph rewriting such as

Hanus [1997]. However, unlike graph rewriting, term rewriting introduces some

problems in handling of non-determinism in call-time choice languages, such as

Curry. These problems are caused by the inability to represent sharing in a term

that is not a graph.

Graph rewriting is also heavily used to formalize functional computation and

extensive work has been done in this context (for instance, Peyton Jones [1992]).

In general, this work is not applicable to functional logic computation because it

assumes determinism, but Section 6.1 discusses possible useful ideas.

In addition to pull-tabbing [Antoy, 2011] used in the Basic Scheme, there are

other techniques to handle non-determinism in programs. These techniques are

described in Section 3.2.2. The notable techniques are backtracking as used in

Prolog, cloning, and Bubbling [Antoy et al., 2006].

Several techniques have been used to implement functional logic programming

languages. Compilation to Prolog is used in Pakcs [Hanus et al., 1995, Hanus,

1996]. Prolog provides non-determinism, so it need not be implemented in the

Curry runtime, however Prolog is eager in its evaluation so implementations built
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on Prolog must implement laziness. Also, these Curry implementations suffer from

performance problems because Prolog implementations are slow compared to many

other languages when doing deterministic computation. However, Prolog based im-

plementations often do very well on non-deterministic benchmarks because Prolog

is based on backtracking which is very efficient in non-deterministic computation

where there is little or no sharing of subexpressions.

Virtual machines provide better performance and more control over the evalua-

tion strategy compared to targeting Prolog, but then non-determinism and laziness

must be implemented. In the case of Mcc [Lux, 2007], non-determinism is imple-

mented much the same way it is in Prolog using backtracking. The use of C allows

many optimizations beyond what was performed for ViaLOIS.

A newer implementation, KiCS2, compiles to Haskell [Braßel et al., 2011].

Haskell provides laziness and a very fast runtime, however non-determinism must

be implemented in the runtime. KiCS2 is currently the fastest Curry implemen-

tation available in many benchmarks. KiCS2 uses pull-tabbing to handle non-

determinism with extensions to allow Prolog like unification of expressions and

constraint solving for built-in types. KiCS2 was the first Curry implementation

to use pull-tabbing to handle non-determinism and has shown that pull-tabbing

has major advantages in some cases.



www.manaraa.com

52

Chapter 6

CONCLUSION

6.1 FUTURE WORK

Finding the relationship between the Basic Scheme and abstract rewriting ma-

chines, such as the Spineless Tagless G-Machine [Peyton Jones, 1992], would pro-

vide insight into which of the many optimizations that have been applied to those

machines would be applicable in a non-deterministic environment. The Spineless

Tagless G-Machine has allowed lazy functional languages such as Haskell to dra-

matically increase their performance with no change in their semantics or ease

of use. If a similar virtual machine were developed for functional logic program-

ming languages it would revolutionize the field of functional logic implementation

techniques.

In functional logic programs there are two kinds of natural parallelism that can

be exploited. “And” parallelism is present when multiple successors of a node can

be seen to be needed at the same time and hence evaluated in parallel. This is

the case for constructors being evaluated to normal form and of operations that

pattern match on multiple arguments. This is called “and” parallelism because

both branches of the parallelism must complete for the computation as a whole

to finish. “Or” parallelism is present when two or more non-deterministic choices

are available. This occurs for every non-deterministic choice. This is called “or”

parallelism because only one of the branches must return for the computation as

a whole to finish.

LOIS effectively encodes both “and” and “or” parallelism. The Basic Scheme
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could be extended to support parallel evaluation of LOIS systems. Because every

rewrite operation only needs local information, it may be possible to implement

rewriting very efficiently and with very little synchronization between threads. For

these techniques to be useful, there must be parallelism present in real world code.

So a study of the parallelism present in real-world code would be needed.

A Basic Scheme implementation that generates C instead of OCaml would allow

low-level optimizations to be explored. This could increase the performance of the

Basic Scheme to match Mcc except without the performance problems related to

backtracking. A C-based implementation would also allow parallel implementation

techniques to be explored at a very low level such as the technique I present in

Peters [2012a].

The performance of ViaLOIS is partly limited by the garbage collector used by

OCaml. The OCaml garbage collector used a write barrier to allow the collector

to run in parallel with the program. However, in ViaLOIS, nodes are mutated

frequently so the write barriers are a major performance issue. A custom garbage

collector could use knowledge of the expression structure and rewrite process to

reduce or remove the need for barriers and increase performance. Also the garbage

collector could replace pointers to indirection nodes with pointers to their targets.

This could be a major advantage in some cases.

Handling of logic variables in the Basic Scheme is limited to algebraic data

types and does not work well in practice for large built-in types. A technique is

needed to implement generators over built-in types efficiently in ViaLOIS. It may

be possible to implement a lazy generator function that produces values only as

needed or as requested; this would allow generators to work over large built-in

types. Some of the techniques developed by Braßel [2011] on KiCS2 may also be

helpful.
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6.2 CONCLUSION

The Basic Scheme is a novel abstract compilation technique. An intermediate

representation (LOIS) of a functional logic program is transformed into three target

procedures that execute simple manipulations of a graph representing the state of

a computation of an expression. These rewrite procedures are easily mapped to

procedures of a concrete programming languages. I have described this compilation

technique by formalizing LOIS and the Basic Scheme transformation and precisely

defining the target procedures.

The target procedures implement a traversal of a state of the computation of an

expression to find a subexpression that can be replaced using either a rewrite step or

a pull-tab step. Rewrite steps occur when an operation application is encountered

that matches a rule in the original rewrite system. This rewrite will be a valid

rewrite in the original rewrite system. Pull-tab steps occur when an operation

or constructor application is encountered that has a choice as a successor. The

pull-tab step will not destroy any information and every result that was possible

before the pull-tab step will still be possible after the pull-tab step.

LOIS graph rewrite systems contribute to the simplicity of the Basic Scheme in

a number of ways. Limited-overlapping means that all non-determinism is repre-

sented as explicit choices allowing pull-tabbing to be used. Inductively sequential

means that the Basic Scheme avoids any unnecessary computation because it is

always known what nodes in an expression must be evaluated next. Finally the

inclusion of explicit failures allows unsuccessful non-deterministic choices to be

eliminated efficiently.

If the procedures produced by the Basic Scheme terminate they will produce

every result that is possible in the original LOIS graph rewrite system. However,

the Basic Scheme will not terminate if any derivation in the original graph rewrite
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system is infinite. Specifically, because of the left bias present in the current de-

scription of the Basic Scheme, if the left branch of a choice does not terminate, the

other branch will never be evaluated, and terminating results on the branch will

never be found. A non-biased version of the Basic Scheme would allow all termi-

nating results to be found in finite time even in the presence of infinite derivations.

A parallel or interlaced implementation of the Basic Scheme could actually imple-

ment this non-biased evaluation.

The simplicity of the Basic Scheme simplifies proving its properties. I proved

the soundness of the Basic Scheme by showing that any computation in the Basic

Scheme is a set of valid derivations in the original LOIS graph rewrite system. This

shows that every result produced by the Basic Scheme is a valid result. I proved

the weak completeness claim that a terminating computation in the Basic Scheme

computes every possible result from the original graph rewrite system. This shows

that no results are lost by the Basic Scheme if it terminates.

The prototype implementation of the Basic Scheme (ViaLOIS) provides a con-

crete example of the simplicity and power of the Basic Scheme. ViaLOIS closely

follows the Basic Scheme in its implementation by using an slightly modified form

of LOIS graph rewrite systems as an intermediate representation and then compil-

ing this intermediate representation into OCaml code that implements the graph

rewrite procedures. This two step compilation process is simple and easy to imple-

ment and modify. ViaLOIS performs well on various functional logic benchmarks,

showing the Basic Scheme does not have prohibitive performance overhead and

may be appropriate for future practical implementations. ViaLOIS validates the

formalism provided by the Basic Scheme by showing the Basic Scheme is not just

an abstract idea, but a technique that can be used to implement real programming

languages on real hardware.
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Appendix A

BENCHMARK SOURCE CODE

The following listing are the benchmark programs used for testing ViaLOIS. For

benchmarks results and descriptions see Section 4.5.

A.1 CHOICEIDS

This file is called benchmarks/choiceIdStress.curry in the ViaLOIS distribu-

tion.

number d x = if d == 0 then

x

else

(number d’ (x∗2)) ? (number d’ (x∗2+1))

where d’ = d − 1

findn v n | v == n = success

main = let n = number 18 0 in findn n (262144 − 1)

A.2 PERMSORT

This file is called benchmarks/PermSortrand.curry in the ViaLOIS distribution.

insert x [] = [x]

insert x (y:ys) = x:y:ys ? y : ( insert x ys)

perm [] = []

perm (x:xs) = insert x (perm xs)
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sorted :: [Int ] −> [Int]

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x <= y = x : sorted (y:ys)

psort xs = sorted (perm xs)

main = psort [12,1,2,13,9,8,7,11,4,6,3,10,5]

A.3 TREE

This file is called benchmarks/tree insert.curry in the ViaLOIS distribution.

−− Carefully selected constants to make sure we actually have

−− enough numbers in the cycle to add a new one each insertion .

m = 39916801

a = 1664525

b = 1013904223

rnd x = (a ∗ x + b) ‘mod‘ m

data BT = Leaf | Branch Int BT BT

insert x Leaf = Branch x Leaf Leaf

insert x (Branch y l r) | x < y = Branch y (insert x l ) r

| y < x = Branch y l ( insert x r)

| x == y = Branch y l r

count Leaf = 0

count (Branch l r) = 1 + count l + count r

tree loop n x t = if n==0 then t

else tree loop (n−1) (rnd x) ( insert (x‘mod‘200000) t)

iterations = 200000

someseed = 24642

−− count so it does not print a big tree
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main = count (tree loop iterations someseed Leaf)

A.4 SHARING

This file is called benchmarks/nondet sharing.curry in the ViaLOIS distribu-

tion.

−− Carefully selected constants to make sure we actually have

−− enough numbers in the cycle to add a new one each time.

m = 39916801

a = 1664525

b = 1013904223

rnd x = (a ∗ x + b) ‘mod‘ m

data BT = Leaf | Branch Int BT BT

insert x Leaf = Branch x Leaf Leaf

insert x (Branch y l r) | x < y = Branch y (insert x l ) r

| y < x = Branch y l ( insert x r)

| x == y = Branch y l r

count Leaf = 0

count (Branch l r) = 1 + count l + count r

tree loop n x t = if n==0 then t

else tree loop (n−1) (rnd x) ( insert (x‘mod‘10000) t)

iterations = 15000

someseed = 24642

h i = count (tree loop iterations (someseed+i) Leaf)

g = head []

f i = (h i)

linsert x [] = [x]

linsert x (y:ys) = x:y:ys ? y : ( linsert x ys)
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perm [] = []

perm (x:xs) = linsert x (perm xs)

sorted :: [Int ] −> [Int]

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x <= y = x : sorted (y:ys)

psort xs = sorted (perm xs)

main = psort [ f 1, f 2, f 3, f 4, f 5]

A.5 HALF

This file is called benchmarks/hanus/half.curry in the ViaLOIS distribution.

The code below is for Halfx2, but Halfx5 is identical except for the replacement of

x+x with x+x+x+x+x.

−− Examples for duplicating non−deterministic computations caused

−− by free variables :

data Peano = O | S Peano

toPeano :: Int −> Peano

toPeano n = if n==0 then O else S (toPeano (n−1))

fromPeano :: Peano −> Int

fromPeano O = 0

fromPeano (S x) = fromPeano x + 1

equal :: Peano −> Peano −> Bool

equal O O = True

equal (S p) (S q) = equal p q

equal (S ) O = False

equal O (S ) = False
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add :: Peano −> Peano −> Peano

add O p = p

add (S p) q = S (add p q)

half y | equal (add x x) (toPeano y) = fromPeano x where x free

main = let x = half 1500 in x+x
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Appendix B

VIALOIS SOURCE CODE

The ViaLOIS source code is too large to include as a listing. It is available online at

http://web.cecs.pdx.edu/~amp4/vialois. This website contains the complete

source code, documentation on how to build and test ViaLOIS, and an example of

the OCaml code that is generated by ViaLOIS.

http://web.cecs.pdx.edu/~amp4/vialois
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